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Abstract NASA's 2017 SnowEx field campaign at Grand Mesa, CO, generated Airborne Laser Scans
(ALS), Terrestrial Laser Scans (TLS), and snow‐probe transects, which allowed for a comparison between
snow depth measurement techniques. At six locations, comparisons between gridded ALS and TLS
observations, at 1‐m resolution, had a median snow depth difference of 5 cm, root‐mean‐square difference of
16 cm, mean‐absolute difference of 10 cm, and 3‐cm difference in standard deviation. ALS generally had
greater but similar snow depth values to TLS, and results were not sensitive to the gridded cell size between
0.5 and 5 m. The greatest disagreements were where snow‐off TLS scans had shrubs and high incidence
angles, leading to deeper snow depths (>10 cm) from ALS than TLS. The low vegetation and oblique angles
caused occlusion in the TLS data and thus produced higher snow‐off bare Earth models relative to the ALS.
Furthermore, in subcanopy areas where both ALS and TLS data existed, snow depth differences were
comparable to differences in the open. Meanwhile, median values from 52 snow‐probe transects and
near‐coincident ALS data had a mean difference of 6 cm, root‐mean‐square difference of 8 cm,
mean‐absolute difference of 7 cm, and a mean difference in the standard deviation of 1 cm. Snow depth
probes had greater but similar snow depth values to ALS. Therefore, based on comparisons with TLS and
snow depth probes, ALS captured snow depth magnitude with better than or equal agreement to what has
been reported in previous studies and showed the ability to capture high‐resolution spatial variability.

1. Introduction

Previous snow depth spatial variability studies have benefited from advancements in airborne and
terrestrial lidar systems, which are capable of producing high‐resolution (<5 m) snow depth maps
(Broxton et al., 2015; Currier & Lundquist, 2018; Deems et al., 2006, 2008, 2013, 2015; Grünewald et al.,
2010; Hedrick et al., 2018; Mott et al., 2010; Painter et al., 2016; Revuelto et al., 2015; Schirmer et al.,
2011; Schirmer & Lehning, 2011; Trujillo et al., 2007, 2009; Wayand et al., 2018). Uncertainties in
Airborne Laser Scanning (ALS) are a function of the laser's range, the topography, and the accuracy and
precision of the laser's geospatial positioning and orientation (Deems et al., 2013; Glennie, 2007).
Terrestrial Laser Scanning (TLS) views the terrain from a fixed height and position, and has similar sources
of uncertainty to ALS (Figure 1). A stable ground surface is necessary to minimize error in TLS data
collections, and surveys that take place in deep snow can be subjected to snow compaction throughout
the scan (Deems et al., 2015; Hartzell et al., 2015).

The scan angle of an ALS or TLS survey is important to consider because the laser beam diverges as the range
increases, which can increase the snow depth uncertainty, specifically in areas where the laser has a high
incidence angle (Deems et al., 2013; Hartzell et al., 2015). For instance, as the incidence angle increases,
the footprint of an obliquely incident laser pulse elongates when interacting with the surface, which
introduces uncertainty in the return signal. A rigorous error propagation effort showed that discrete lidar
returns with incidence angles greater than 60° at a 500‐m range have an additional vertical and horizontal
uncertainty introduced, which ranges from 2–10 cm (Hartzell et al., 2015). This uncertainty will rise in
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regions where vegetation cover occludes (or partially occludes) the laser from penetrating to the ground
(Anderson et al., 2018).

These sources of uncertainty, however, are offset by the ability of lidar systems to map snow depth at high
resolutions across complex and forested terrain. Therefore, airborne lidar has been used to map snow depth
since 2001 (Hopkinson et al., 2001, 2004). Since then, snow depthmaps derived fromALS and TLS have been
compared with snow‐probe measurements, Global Navigation Satellite System (GNSS) observations, and
acoustic snow depth sensors (Table 1). These studies have used a collection of point‐scale measurements,
characterized by a small support of 0.01–0.5 m (Blöschl, 1999), which can contain geolocation uncertainty
and do not provide the samemeasurement density over wide areas as lidar scans. Therefore, previous studies
were unable to explicitly quantify the ability for aerial or terrestrial lidar systems to determine the spatial
variability of snow depth. Furthermore, these studies come to different conclusions as to whether errors
are higher in the forest or in the open, and whether these errors are due to low‐lying vegetation or significant
geolocation errors (Hopkinson et al., 2004; Reutebuch et al., 2003; Tinkham et al., 2014). Lastly, previous stu-
dies have not explicitly evaluated discrepancies in lidar data due to different viewing perspectives.

NASA's 2017 SnowEx field campaign at Grand Mesa, CO, generated a suite of coincident, or nearly coinci-
dent, airborne, and ground‐based observations—including ALS, TLS, and snow depth probe transects. This
extensive data set offers the unique opportunity to test the consistency of different snow depth measuring
techniques and test their sensitivity at various spatial resolutions over a gradient of different vegetation types
(Kim, 2018; Kim et al., 2017).

In this technical note, we comprehensively compare ALS observations to TLS surveys for the first time and
also compare ALS observations to snow‐probe transects from NASA's 2017 SnowEx campaign. We therefore
quantify the sensitivity and consistency of different snow depth measurement techniques to capture spatial
variability at high spatial resolution across various land cover types, including directly underneath the
forest canopy.

2. Location and Data
2.1. Grand Mesa, CO

NASA's 2017 SnowEx campaign took place on GrandMesa in western Colorado, USA (Figure 2). There were
six TLS sites with variable components of grasses, shrubs, and trees. Shrubby cinquefoil (Dasiphora fruti-
cosa), big sagebrush (Artemesia tridentata ssp. vaseyena), and silver sagebrush (A. cana ssp. viscidula) are
all under 1‐m height and prevalent on the windier western end of the Mesa. Forests were present at four
TLS sites (A, K, N, and the Ranger Station) and are predominantly Engelmann spruce (Picea engelmannii),
with much rarer components of subalpine fir (Abies lasiocarpa), Aspen (Populus tremuloides), and lodgepole

Figure 1. Conceptual diagram of ALS and TLS scans during the snow‐off survey. Photo is from the western end of Grand
Mesa, CO, USA. Aircraft height and size are not to scale. ALS = Airborne Laser Scans; TLS = Terrestrial Laser Scans.
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pine (Pinus contorta var. latifolia). The Ranger Station site was unique in that it included a grassy picnic area,
parking lot, and two cabins with partly snow‐free roofs.

2.2. ALS

The snow‐off ALS survey was collected by the NASA Airborne Snow Observatory (ASO) on 26 September
2016, with snow‐on data collected on 8 and 16 February 2017 using methods, instrumentation, and proces-
sing steps described in Painter et al. (2016) to receive three‐dimensional point cloud data. All three flight alti-
tudes were around 4,100 m above sea level, which is about 1,000–1,100 m above the terrain leading to a
footprint size of about 26 cm and an average total point density of around 18 points per square meter. See
Text S1a in the supporting information for additional details.

2.3. TLS

Snow‐off TLS data were collected between 26 September and 2 October 2016 using two different lidar scan-
ners, a Riegl VZ‐1000 and Leica C‐10 ScanStation (Table S1). Snow‐on scans were collected on near‐
coincident dates in February (Table S1), and tripod legs were placed in contact with the ground or a packed
snow surface to minimize potential errors from snow compaction throughout the survey. Scans with the

Table 1
Previous Evaluations of Aerial and Terrestrial Lidar

Study Laser ALS/TLS
Snow
(Y/N)

Height above
terrain (m) Evaluation method Evaluation summary

Reutebuch et al. (2003) Saab TopEye Lidar
System (Helicopter)

ALS N 200 GNSS Different forest densities:
(Mean difference ±1σ)
Clearcut: 0.16 ± 0.23 m,
Heavily thinned: 0.18 ± 0.14 m;
Lightly thinned: 0.18 ± 0.18m;
Uncut: 0.31 ± 0.29 m

Hopkinson et al.
(2001, 2004)

Optech ALTM 1210
and 1225

ALS Y 700–750 Snow depth probes Mean difference: 0.01–0.13 m;
canopy understory can systematically
underestimate snow depth

Hopkinson et al. (2005) Optech ALTM 2050 ALS N 1,200 GNSS Mean difference: 0.04 m
Prokop et al. (2008) Riegl LPM‐i800HA TLS Y ~2 Tachymetry and

snow probing
Tachymetry: 1σ = 0.02 m
Snow probe: 1σ= 0.1 m

Prokop (2008) Riegl LPM‐i800HA
and LPM‐2K

TLS Y ~2 Snow depth probes Snow depth accuracy within 0.1 m
for distances <500 m

DeBeer and
Pomeroy (2010)

Optech ALTM 3100 ALS Y 3,500 Snow depth Probes RMSD was 0.17 m; greater error of
up to 0.6 m in locations with exposed
alpine shrubs.

Spaete et al. (2011) Leica ALS50 Phase II ALS N 900 GNSS RMSD 0.07–0.22 m – largest
errors on herbaceous slopes

Tinkham et al. (2011) Leica ALS50 Phase II ALS N 900 GNSS RMSD 0.13–0.46 m depending
on vegetation type.

Mean RMSD: 0.28 m
Hopkinson et al. (2012) Optech ALTM 3100 ALS Y 3,500 Snow depth probes Mean differences:

lower open area: 0.07 m;
forested areas: 0.13 m;
Alpine open area: −0.04 m;
lidar generally had higher snow
depth than snow probe

Tinkham et al. (2014) Leica ALS50 Phase II ALS Y 900 Snow depth probes Shrub/meadow: RMSD = 0.14 m;
forested areas 0.2–0.35 m

Kirchner et al. (2014) Optech GEMINI
ALTM 1233

ALS Y 600 Plowed area
comparison

Biased up to 0.05 m

Harpold et al. (2014) Optech GEMINI
ALTM 1233

ALS Y Varied Acoustic snow
depth Sensors

RMSD 0.23 m between 60 acoustic
snow depth sensors

Deems et al. (2015) Riegl VZ‐4000 and
Riegl VZ‐6000

TLS Y ~2 Snow pit Difference was 0.01 m between TLS
and corner of snow pit

Painter et al. (2016) Riegl Q1560 ‐

Dual lasers.
ALS Y ~3,000

Snow depth probes
Exposed area; mean absolute
difference: 0.08 m in 15 × 15‐m area

Note. ALS = Airborne Laser Scans; TLS = Terrestrial Laser Scans; RMSD = root‐mean‐square difference; GNSS = Global Navigation Satellite System.
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Riegl VZ‐1000 were obtained from 50° off‐nadir, to 150° pointing upward, in a 360° rotation at a 0.03°
increment (angular resolution of 0.03°) in both rotation planes. Scans with the Leica C‐10 ScanStation
were obtained from 45° off‐nadir, to 180° pointing upward, in a 360° rotation at a 0.06° increment in both
rotation planes. See Text S1b for additional details.

2.4. Snow Depth Probe Transects

Both a standard 3‐m snow depth probe and a 1.2‐m GPS‐equipped Magnaprobe (Sturm & Holmgren,
2018), which automatically records the geolocation of each snow depth measurement to within ±2.5
m, were used to compare with ALS data. Snow‐probe transects did not overlap with TLS surveys; there-
fore, only ALS was compared with snow‐probe transects. The snow depth measurement uncertainty of
both snow depth probe measurements is estimated to be around ±5 cm due to the potential penetration
of the probe's tip into the soil underneath the snow, impacts of low vegetation, and the angle of the
probe (Sturm & Holmgren, 2018). The location of each standard snow‐probe transect was estimated
using linear lines between georeferenced transect poles used to guide surveyors from beginning to end.
This resulted in an estimated ±5‐m geolocation error for each snow depth measurement. More details
are provided in Text S2.

3. Methods
3.1. Classification and Gridding

Three‐dimensional point clouds were classified as ground and nonground points (e.g., vegetation) using
LAStools lasground (http://rapidlasso.com/lastools/), which is a variation of the Axelsson (2000) methodol-
ogy. We used default parameters within lasground,with the exception of choosing step sizes of 2 and 10 m to
allow for some uncertainty in the classification.

Snow‐on and snow‐off scans from both ALS and TLS were gridded to 0.5‐, 1‐, 2‐, 3‐, and 5‐m spatial resolu-
tions using two strategies: first, using the lowest of all ground points within each grid cell, and second, aver-
aging all ground‐classified points within a grid cell. With both strategies, if the difference between the two
elevation models built with the two different classifications (step 2 m and 10 m) was greater than 20 cm,

Figure 2. Distribution of ALS, TLS, and snow‐probe transects across Grand Mesa, Colorado (top panel). Ground images
collected in September 2016 demonstrate the variability and state of the ground vegetation at the TLS sites (bottom
panels). Many gaps within the ALS data are water bodies, which were intentionally masked out with the national
hydrography data set. ALS = Airborne Laser Scans; TLS = Terrestrial Laser Scans.
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then that grid cell was removed from the comparison. Across all sites, this filtering removed 0.14% of the
snow depth values. Lastly, while there was little difference in the results based on gridding methodology,
we focus our results on snow depth values derived from the lowest‐return gridding method and show
results from the alternative strategy in the supporting information (Text S4).

3.2. TLS Incidence Angle

For each TLS site, we used the geographic position of the snow‐off TLS scan position, the ALS digital terrain
model at 1‐m resolution, and the TLS scanner's Height Relative to the Target Terrain Height (HRTTH) to
derive an incidence angle map for each snow‐off TLS scan position. From each scan position, we searched
out radially, computing the distance between the TLS scanner and the target grid cell (DIST). We then
approximated the slope of each target grid cell using the two adjacent elevation values within the azimuthal
direction of the search line. The incidence angles (θ) corresponding to each snow‐off scan position were com-
puted over the entire domain (equation (1)) to create a set of incidence angle maps for each snow‐off TLS
scan position. Finally, the lowest incidence angle within the set of maps was determined for each grid cell.

θ ¼ tan−1 DIST
HRTTH

� �
−slope (1)

4. Results
4.1. ALS Versus TLS Comparison

Both ALS and TLS surveys captured a similar snow depth magnitude and variability. Using all data where
the 1‐m ALS and TLS snow depth grids overlapped, we found a median difference of 5 cm (4%), root‐
mean‐square difference (RMSD) of 16 cm, and mean absolute difference of 10 cm (Table 2). At individual
TLS sites, ALS and TLS snow depth differences ranged from a 1–13 cm (1–10%) median difference
(Figures 3 and S3 and Tables 2 and S3), 10‐ to 28‐cm RMSD (Table S5), and a 7‐ to 20‐cm mean absolute dif-
ference (Table S6), where the ALS data generally showed deeper snow depth values. The closest agreement
occurred at TLS Sites A, B, and K, where median snow depth differences were less than 5 cm, while the worst
agreement was at the Ranger Station, where median snow depth difference was 13 cm.

Table 2
Percentage of the Domain That Contained a Vegetation Height >2 m (Forest), Snow Depth Differences Between Lidar Data Sets at 1‐m Spatial Resolution in the Open
and in the Forest, and Percent of the Forested Area Where Both ALS and TLS Data Were Unable to Derive Snow Depth

Forested area

Median difference
(Open/Forest)

median(ALS − TLS)

RMSD
(Open/Forest)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ ALS−TLSð Þ2

N

q

Mean absolute
difference

(Open/Forest)

abs ALS−TLSð Þ

Difference in
standard
deviation

(Open/Forest)

σALS−σTLS

Forested
area

missing
by ALS

Forested
area

missing
by TLS

Forested area
captured by

both
ALS and TLS

Site A 17%
2,685 m2

2 cm
0 cm

17 cm
18 cm

12 cm
11 cm

−3 cm
−3 cm

26%
689 m2

15%
405 m2

63%
1,687 m2

Site B — 1 cm
—

16 cm
—

10 cm
—

−7 cm
—

— — —

Site K 20%
3,552 m2

4 cm
5 cm

9 cm
13 cm

7 cm
10 cm

−1 cm
−4 cm

12%
417 m2

24%
859 m2

67%
2,392 m2

Ranger Station 36%
2,257 m2

12 cm
16 cm

25 cm
34 cm

18 cm
24 cm

−6 cm
−6 cm

21%
479 m2

30%
684 m2

59%
1,328 m2

Site P — 7 cm
—

11 cm
—

8 cm
—

6 cm
—

— — —

Site N 37%
3,887 m2

6 cm
8 cm

20 cm
22 cm

12 cm
15 cm

−5 cm
−5 cm

14%
549 m2

17%
663 m2

71%
2,745 m2

All forested sites 24%
12,381 m2

5 cm
6 cm

16 cm
22 cm

10 cm
14 cm

−3 cm
−3 cm

17%
2,134 m2

21%
2,611 m2

66%
8,152 m2

All sites (Forest +
Open)

— 5 cm 16 cm 10 cm −3 cm — — —

Note. ALS = Airborne Laser Scans; TLS = Terrestrial Laser Scans; RMSD = root‐mean‐square difference.
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At individual sites, the difference in standard deviations from the 1‐m resolution ALS and TLS snow depth
ranged between −7 and 1 cm (mean: −3 cm). The TLS snow depth data generally contained a higher stan-
dard deviation due to the difficulty in obtaining a snow‐off surface while scanning shrubs at a high‐incidence
angle (section 5.1.1). Snow‐off or snow‐on surfaces were not compared directly because the ALS data were
not subjected to absolute registration, resulting in a vertical bias relative to the TLS snow‐off data (Text S1).

Differences in themedian snow depth values between ALS and TLSwere generally not sensitive to the gridd-
ing resolution between 50 cm and 5 m (Table S3). However, at the Ranger Station, differences in median
snow depth values increased 5 cm as the gridding resolution increased from 50 cm to 5 m. Similar to median
snow depth differences, the difference in standard deviations between ALS and TLS were generally not sen-
sitive to the gridding resolution, except at the Ranger Station and Site P (Table S4).

4.2. ALS Versus Snow‐Probe Transects

In general, both standard andmagnaprobe snow depthmeasurements had higher snow depths than the ALS
snow depth values on both 8 and 16 February (Figure 4). The median values from combining both standard
and magnaprobe snow depth transects were on average 6‐cm greater than the median values from ALS on 8
and 16 February, and the mean absolute difference and RMSD of that comparison were 7 and 8
cm, respectively.

On average, snow‐probe transects agreed with the ALS standard deviation. For instance, ALS and
snow‐probe transects differed in their standard deviations by 1 and 0 cm on 8 and 16 February,

Figure 3. (a–c) True color imagery for Terrestrial Laser Scans (TLS) Sites A, B (USDANAIP), and the Ranger Station (© 2018 Google). (d–f) Average of the Airborne
Laser Scans (ALS) and TLS snow depth. Areas that were missing either ALS or TLS data were removed from the analysis and are shown in white. (g–i) ALS snow
depth minus TLS snow depth at 1‐m resolution. (j–l) ALS and TLS snow depth distributions. Dashed lines show the median value of the distribution. Figure S3
shows similar results for TLS Site K, N, and P.

10.1029/2018WR024533Water Resources Research

CURRIER ET AL. 6290



respectively. The mean absolute difference and RMSD between the standard deviation values from the
snow‐probe and ALS transects were 3 and 4 cm, respectively, on both 8 and 16 February. The general
agreement between ALS and TLS standard deviations, as well as between standard deviations from
ALS and snow depth transects, suggests that ALS data were able to resolve the snow depth variability
at high spatial resolution.

4.3. ALS and TLS Vegetation Interactions

At TLS Sites A, K, N, and the Ranger Station, the domains were partly forested (Table 2). At these locations,
the median snow depth difference between ALS and TLS was 1 cm greater underneath the canopy than in
the open. Similarly, the RMSD andmean absolute difference between ALS and TLS snow depth increased by
6 and 4 cm, respectively. The largest change in RMSD and mean absolute difference was at the Ranger
Station site, which generally performed worse than the other sites likely due to multipath errors (see
section 5.1.2). Removing the Ranger Station site, the RMSD and mean absolute difference only increased
by 3 and 2 cm. Lastly, the difference in the snow depth's standard deviation between ALS and TLS did not
generally increase (Table 2). This implied that ALS snow depth data were not adversely affected by canopy
cover. However, between the four forested sites, ALS data were missing 17% of the 1‐m grid cells, and TLS
data were missing 21%. This left 66% of the total forested area to compare ALS and TLS snow depth
(Table 2).

Figure 4. (left column) Comparison between median snow depth values from snow‐probe transects (standard and mag-
naprobe) and ALS snow depth data from 8 and 16 February 2017. (right column) Comparison between standard deviations
from the snow‐probe transects (standard and magnaprobe) and the ALS data from 8 and 16 February 2017. “(All)” implies
that the mean difference was used by combining either the standard deviation of the transect or the median snow depth
values from both the standard and magnaprobe snow depth transects. ALS = Airborne Laser Scans.
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5. Discussion
5.1. Sources of Snow Depth Differences
5.1.1. Shrubs and High Incidence Angles
Despite similar differences between ALS and TLS within open and forested areas, TLS snow depth was 10‐ to
13‐cm less than ALS snow depth in areas where shrub heights were greater than 20 cm in combination with
TLS incidence angles that were higher than 80° (Figure S5). These localized differences caused the TLS
derived snow depth to be more heterogenous and have lower median snow depths than ALS data
(Tables 2 and S4).

These differences were likely due to the different viewing perspectives of ALS and TLS (Figure 1). For
instance, it is easier to penetrate a shrub with a laser at a normal rather than an oblique angle. Prior studies
using snow depth probes or GNSS observations noted that airborne lidar systematically underestimated
snow depth in areas with significant ground vegetation (Hopkinson et al., 2004), or ALS errors increased
where there were shrubs (DeBeer & Pomeroy, 2010; Spaete et al., 2011). In contrast, our results suggested
that aerial lidar did penetrate at least partly through the shrubs, while the terrestrial lidar was partially
occluded by the shrubs (Anderson et al., 2018), ultimately biasing the TLS‐derived snow depth too low.
The ability for ALS to see through the shrubs in our study is likely explained by differences in ground vege-
tation type between Grand Mesa and previous studies, the relatively low altitude and high point density of
the ALS survey, and the development in recent years of more advanced algorithms that extract discrete lidar
returns from the return energy waveforms (Pfennigbauer & Ullrich, 2011; Ullrich & Pfennigbauer, 2011).
5.1.2. Multipath Errors
A combination of high incidence angles and shrubs was unable to explain all of the snow depth differences.
For instance, we still found greater than 10‐cm snow depth differences near the TLS snow‐off scan positions
at the Ranger Station site. At the Ranger Station site, TLS scans were not vertically or horizontally registered
with each other as a result of multipath errors in the GNSSmeasurements. Multipath errors were likely more
significant at the Ranger Station than in other TLS sites due to the topography, buildings, and vegetation. We
were unable to quantify potential registration errors at other sites due to the lack of a snow‐free static struc-
ture; however, qualitative point cloud comparisons with trees showed that the ALS and TLS surveys were
coregistered with each other. Fortunately, we were able to detect and correct for these multipath errors at
the Ranger Station site. Registering both the TLS scans to the snow‐free roof in the ALS data improved
the metrics at the Ranger Station site. However, the Ranger Station site was a smaller domain compared
to other TLS sites; therefore, the TLS registration only changed the median snow depth difference using
all ALS and TLS snow depth data from 5 to 4 cm. Furthermore, there was little change in other metrics using
all the ALS and TLS snow depth (Table S11).
5.1.3. Snow Depth Probes
ALS‐derived snow depth was 6 cm less on average than what was recorded with snow‐probe measurements.
We suspect that the general bias in ALSmeasurements relative to snow‐probemeasurements is due to snow‐
probe penetration through the soil/vegetation (Sturm & Holmgren, 2018). For instance, human observers
are more likely to press a probe into duff or soft ground, and are known to unintentionally avoid making
measurements in very low or zero snow (both of which would bias probe measurements high).
Furthermore, while ALS reached the ground through shrubs more than TLS, it may have done so less fre-
quently than a human observer. Interestingly, both magnaprobe and standard snow depth transects gener-
ally showed higher snow depth values despite different methodologies. For instance, magnaprobe
geolocation uncertainties are independent between each measurement, while the geolocation uncertainty
of a standard snow‐probe transect increases along the transect line. Since both types of snow‐probe transects
typically provided higher median snow depth values than ALS, snow depth differences between median
values were not likely due to geolocation errors.

5.2. Comparisons to Previous Studies

Despite contrasting median snow depth differences between ALS versus TLS and ALS versus snow‐probe
transects, the RMSD was 16 cm between all 1‐m gridded ALS and TLS snow depth data. Meanwhile, the
RMSD between median values from ALS and snow‐probe transects was 8 cm. This suggested that ALS data,
which were evaluated using TLS data and 52 snow‐probe transects (n = 10,926) through a variety of vegeta-
tion, resulted in a RMSD that was equal to or better than previous studies which evaluated ALS using point
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based measurements (DeBeer & Pomeroy, 2010; Harpold et al., 2014; Spaete et al., 2011; Tinkham et al.,
2011, 2014). Lastly, the mean absolute difference using all ALS and TLS data was 10 cm, while the mean
absolute difference between the median values of the ALS and snow‐probe transects was 7 cm. These mean
absolute differences were similar or less than the mean absolute difference reported in Painter et al. (2016);
(Table 1).

5.3. Context of the Snow Depth Differences

After coregistering the Ranger Station site (section 5.1.2.), the median snow depth differences were relatively
small, ranging between 1 and 7 cm, or 1–5% using the observed median snow depth across all TLS sites (1.29
m). Because the differences in observations are absolute in nature, as the snow depth decreases, the percent
differences will increase. For instance, if themedian snow depth was 25 cm, the percent difference inmedian
values would have ranged from 4–28%.

6. Conclusions

Both ALS and TLS data captured a similar spatial variability and magnitude of snow depth at high spatial
resolutions. For instance, at 1‐m resolution, ALS and TLS data had a median difference of 5 cm, RMSD of
16 cm, a mean absolute difference of 10 cm, and a difference in standard deviation of 3 cm. Additionally,
comparisons between median values from ALS and snow‐probe transects showed a mean difference of 6
cm, mean absolute difference of 7 cm, RMSD of 8 cm, and a mean difference in the standard deviation of
1 cm. These differences, in combination with the differences between ALS and TLS were similar or better
than those reported in previous evaluations of ALS.

In addition, ALS and TLS showed similar differences underneath the canopy to those in the open, but ALS
data at 1‐m spatial resolution were unable to derive snow depth in part of the forested area due to missing
ground returns. Furthermore, ALS and TLS both inherently have different viewing perspectives. In localized
areas where the snow‐off TLS scans had high incidence angles and were scanning shrubs, TLS surveys
derived shallower snow depths relative to ALS. This implied that ALS pulses were more likely to be from
the ground, whereas the ground was relatively more occluded in the TLS data. Using these results, we pro-
vide suggestions for future campaigns that evaluate ALS data (Text S5). These recommendations focus on
explicitly evaluating void filling routines in forested areas (Zheng et al., 2016), minimizing differences in
viewing perspective, and ground controlling observations to provide absolute georegistration.
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